If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+24x-9=0
a = 35; b = 24; c = -9;
Δ = b2-4ac
Δ = 242-4·35·(-9)
Δ = 1836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1836}=\sqrt{36*51}=\sqrt{36}*\sqrt{51}=6\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-6\sqrt{51}}{2*35}=\frac{-24-6\sqrt{51}}{70} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+6\sqrt{51}}{2*35}=\frac{-24+6\sqrt{51}}{70} $
| -18=-6(x-2) | | -9=5-(7-x) | | t/29=21 | | p+-782=-159 | | c+25=951 | | T/2t=124 | | f+29=988 | | (2x+17)+51+(7x-50)=180 | | (2i)(10i)=-20 | | 728=28b | | 0.75(2)^x=4(0.2)^x | | -21g=483 | | 7x-55=65.5 | | -2x+6+4x=−x-1 | | 3x-4=65.5 | | j+297=583 | | s+45=83 | | 3x-4=7x-55 | | n+-866=30 | | c-374=459 | | -31=q/13 | | z/18=15 | | 3x+14=10x-42 | | 774=r+249 | | y-246=414 | | g-22=9 | | n+73=100 | | 15x+50=240 | | u+3/4=15/2 | | 3x+40+9x-2=180 | | 5/6+3=x | | u+3/4=71/2 |